19 research outputs found

    2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    Get PDF
    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy

    Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    Get PDF
    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earths climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-m band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed

    A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Get PDF
    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement

    Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Get PDF
    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity

    2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Get PDF
    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement

    Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space

    Get PDF
    High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology

    Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    Get PDF
    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed

    Flight Demonstration of a 2-Micron, Double Plused CO

    No full text
    NASA Langley Research Center (LaRC) developed a double pulsed, high energy 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument to measure atmospheric CO2 column density. The 2-μm double pulsed IPDA lidar was flown ten times in March and April of 2014. It was determined that the IPDA lidar measurement is in good agreement with an in-situ CO2 measurement by a collocated NOAA flight. The average column CO2 density difference between the IPDA lidar measurements and the NOAA air samples is 1.48ppm in the flight altitudes of 3 to 6.1 km

    Flight Demonstration of a 2-Micron, Double Plused CO2 IPDA Lidar Instrument

    Get PDF
    NASA Langley Research Center (LaRC) developed a double pulsed, high energy 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument to measure atmospheric CO2 column density. The 2-μm double pulsed IPDA lidar was flown ten times in March and April of 2014. It was determined that the IPDA lidar measurement is in good agreement with an in-situ CO2 measurement by a collocated NOAA flight. The average column CO2 density difference between the IPDA lidar measurements and the NOAA air samples is 1.48ppm in the flight altitudes of 3 to 6.1 km
    corecore